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ABSTRACT
In this paper we derive explicit rational forms for the Poincaré series of the com-
mutative and the non-commutative trace rings (5.3 and 5.5). To this end, we use
the Molien-Weyl formula to reduce the question to a problem about flows in a par-
ticular graph.

1. Introduction

For simplicity we will assume that the ground field is C in this paper. However,
it is clear that all results remain valid for an arbitrary algebraically closed field of
characteristic zero.

Let m, n be natural numbers and let M,, be the variety of n X n matrices. (M,)™
will be the m-fold product M,, X - - - x M,,. Put G = SL, and let G act on M, by
conjugation. Then one defines

6)) Zpp=|f: (M)" > C| f polynomial and G-equivariant},
Q) Tm,n = {f:(M,)™ > M,]| f polynomial and G-equivariant .

Z,, , is the commutative and T,, , is the non-commutative trace ring of m generic
n X n matrices.

Let ¥ be an n-dimensional vector space. Define G =SL(V), W= (V & V*)™,
R =SW, R=End(V) ® R. Then it is clear from (1), (2) that Z,, , = R®, T, , =
RO for the obvious G-actions.

R and R may be Z™-graded by giving the elements in the i’th copy of V® V*
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in W degree (0, ...,1,...,0) where the 1 occurs in the i’th place. Clearly Z,, ,, and
T, are graded subrings of R and R and we may therefore define their Poincaré
series P(Z,, »,t) and P(T,, ,,t) where ¢ = (£;);=),. . m is a set of variables. Know-
ing the Poincaré series of a graded ring can be an important first step in the de-
termination of the actual structure of the ring. See, e.g., [7].

It is well known that P(Z,, ,,t) and P(T,,, ,,t) are rational functions with co-
efficients in Z. However, apart from a few cases (n =2, (m,n) = (2,3), 2,4)), few
explicit formulas are known. See, e.g., [7][3].

In this paper we will give general formulas for P(Z,, ,,t) and P(T,, ,,t). Our
main tool will be the Molien-Weyl formula [10], which gives the Poincaré series
of a ring of invariants as an integral over a torus. The standard way to evaluate
this integral is via the residue theorem. However, in all but the simplest cases, this
procedure is complicated and unwieldy.

The main idea used in this paper is that, in the case of trace rings, the Molien-
Weyl formula leads to an expression for the Poincaré series in terms of generat-
ing functions for flows on a certain graph. We then use elementary graph theory
to compute these generating functions.

First we use a standard result in the theory of linear diophantine equations to
show that the denominators involved are products of terms of the form 1 — U(¢)
where U(t) is a monomial of degree less than n (Thm. 5.1). This result is stronger
than what could be expected form the Procesi-Razmyzlow result, which says that
Z,,, is generated in degree < n? (see [4][5]).

A second observation we use is that at the cost of losing some information,
we may replace multiple arrows by single ones. This leads to expressions for
P(T,, ,,t) and P(Z,, ,,t) in terms of two basic functions depending only on n
(Prop. 5.3).

Finally, we undertake the labour of computing the generating functions for
flows on graphs in general. We obtain that such a generating function is a sum of
rational functions indexed by spanning trees for the graph. Again, we may apply
this result to trace rings (Thm. 5.5).

Although the number of terms in the resulting expression for the Poincaré se-
ries is rather large, each of the individual terms has a simple structure. For exam-
ple, we could use this expression to give an almost trivial proof for the functional
equation satisfied by P(T,, », 1) [2][8][9].

2. Preliminaries about graphs

In the sequel a (finite directed) graph will be a quadruple G = (V, E, h, t) where
V,E are finite sets and A, ¢: E— V are arbitrary maps. V will be the set of vertices
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and E will be the set of edges (arrows) in G. If e € E then f(e), h(e) are resp. the
beginning and the end of e. Sometimes if V, E, A, t are not specified then we will
use the notation G = (Vg, Eg, hg, Ig)-

If g = (V,E',h’,t') then we will say that G’ is a subgraph of G (notation:
§'CQif V' CV,E'CEandh’ =h|E', ' =t|E"

A path P in G will be a sequence (vy,e,...,€,,V,41) Where (v;), €V, (¢;);€EE
and {h(e;),1(e;)} = {v;,v;4;}. We say that P starts in v, and ends in v,,;.

We call an ¢; in P correctly oriented if v; = t(e;), viy = h(e;). Otherwise, ¢; is
incorrectly oriented. If all edges in P are correctly oriented then we say that P is
an oriented path.

Below we will use the following notation: assume that a = (a,).cx are elements
of Cand P = (v;,ey,...,€,,U,,1) is a path; then

3) aP =TJas'®

where e(e;) = 1 if ¢; is correctly oriented in P and —1 otherwise.

A graph is said to be connected if for any two vertices v, w there is a path start-
ing in v and ending in w.

A path P = (v,ey,...,€,,0,4,) is closed if v,,; = vy. If P’ is another closed
path then we say that P = P’ if P" = (v;,e;,...,0;_1,€_,,0;) for some j. If v; #
v;except if i = jor if (i,j) = (1;n + 1), then we call P a cycle. If P is in addition
oriented, then we say that P is an oriented cycle. We will use the notation C(Q)
for the set of cycles in G. The set of oriented cycles in G will be denoted by C (9.

A tree is a connected directed graph which does not contain any non-trivial cy-
cles. If G is a graph and T C G is a tree, then we say that T is a spanning tree of
Gif Vo = V. It is a classical fact that any connected graph contains a spanning
tree. We will write T (G) for the set of spanning trees of G.

If T C G and T is a spanning tree, then for any e € Eg\ E there is a unique
non-trivial cycle, with e correctly oriented, in the graph obtained by adjoining e
to F. This cycle will be denoted by C(e,T).

Let T be a tree and let e be an edge in T. Then if we remove e from T we ob-
tain two trees, which we will denote by 7T, , and T, .. Here T, . is the tree that
contains A (e).

3. Flows

In this section we assume that we are given some finite connected graph § =
(V,E, h,t) without loops, and variables z = (2,)pev, ¢ = (f.)ecr. Let f be a
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Laurent polynomial, homogeneous of degree 0, in (z,),c» With rational coeffi-
cients. Define

= S
¥ (G, fit,2) = .
II (= tezie)Zneey)
ecE
Now assume |7,| < 1. We may then define
4 _ S
@ ¥(G, /1) = - dv.
7. H (1 - tezt?e)zh(e))

e€E

Here T is the torus given by [ (z,,),,eyl 1z, =1vve V] and

A az,
dv=_ L v
ey 1] z,
veV

is the usual T -invariant volume element.
In the sequel, we will be interested in evaluating (4). First we show that, at the
cost of losing some information, multiple arrows may be replaced by single ones.

LeMMaA 3.1. Assume that G’ is obtained from G by replacing an edge e with
edges e,, . . .,e, having the same beginning and end vertex as e. Extend t to a new
set of variables t' = (1,)eckg. - Then

1 au—l "
) V(G N ttey=ter .. 1o ~te] = (u_—I)_'- @_—1— t271¥(G, f,1).

Proor. This follows from the fact that

u—1
1 1 8 1 .

(1 = tzidyzne)* (=11 AT (1 =tz 2

We may expand f = X;a;x,, where ¢; € Q, p;: V> Z, 2,y pi(v) =0 and
X = Ioey 24, Then it is clear that

(6) ‘I’(g’f;t) = Eai‘ll(gsxmxt)

and the same holds for ¥.
For simplicity’s sake we will write ¥ (G, u,?) and ¥ (G, u,1,z) for V(G Xus )
and \T'(Q,x“,t,z). It should be noted that ¥ (G, u,?) is obtained from expanding
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¥ (G, 1, ,2) into the ¢’s and then dropping any term that contains z’s. Using this
fact one sees that ¥ (G, u,?) has a very natural interpretation in terms of graphs.

DEerINITION 3.2. A flow in G associated to u. is a map ¢ : E — N such that for
alveV
2 d(e)+u(v) = 3 ¢fe).

h(e)=v t(e)=v

If u(v) =0 for all v then a flow associated to p. will just be called a flow.

We may now write

¥(Gpt) =2 I] 2

¢ ecE

where the summation runs over all flows in G associated to u.

A flow clearly corresponds to the solution of a system of linear diophantine
equations. Therefore, in analogy with [6], we will call a non-zero flow fundamental
if for any decomposition ¢ = ¢; + ¢, with flows ¢,, ¢, either ¢; = 0 or ¢, = 0.

A non-zero flow will be called completely fundamental if n¢ = ¢, + ¢,, for
flows ¢,,6, and n € N, implies that ¢, = n, ¢, ¢, = ny¢ where n,,n, € N.

The following lemma may be easily deduced from [1, Th. 8.2}.

LemMa 3.3. (1) Assume that C = (vy,ey,...,e,,v,) is an oriented cycle in G.
Let ¢ be defined as follows: ¢{e) =1 ifeisin C and ¢(e) = 0 otherwise. Then ¢
is a completely fundamental flow.

(2) Any fundamental flow on G is of the form given in (1).

(3) Any fundamental flow on G is completely fundamental.

Using the results in [6] we obtain:

Q.(1)
II a-¢%

cel(®)

Y ¥(G,p,t) =

where Q, (¢) € Z[(,).ck] (the notation £ is as in (3)).
Combining (6) with (7) we obtain the following result.

THEOREM 3.4. With notations as above, there exists a polynomial Q(t) €
Q[(te)eeE] such that

Q(1)
o a-:"

cel(g)

Y(G. A1) =
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4. A rational expression for ¥ (G, f,¢)

In this section we retain the notations of the previous sections. We will compute
¥ (G, f,t) under some mild conditions (Thm. 4.13). This section is basically a se-
ries of lemmas which lead to the proof of 4.13.

LemMmA 4.1. Let z,,...,2, be a set of variables and let b, . . . ,b, be elements
of C, such that b,---b, + 1. Then

B,

21 “
8 ———— - =
( ) § H b Z,+1)

n

H (zi — biziv1)
i=1
Here z,,, = z,, and the B;’s are elements of C.

Proor. If we multiply (8) by ITi-; (z; — b;z;4;) we see that we have to solve

n
70 = 2 Bi(z; — bzjn1)
j=1

or
1=B,-b,B,,
0=B;—-b;_B;_, forj # 1.
It is clear that this system has a solution if b,---b, # 1. [ |

Now let G be some connected, directed graph without loops and assume that
there are given ¢ = (¢,).cz € C and variables (z,),cy. Assume furthermore that
for any cycle C € C(Q), t¢ # 1.

Let

1
H (zt(e) - tezh(e)) ’

ecE

P(G,1) =

LemMma 4.2. Let C = (v,eq,...,Up,e,,0,) be a cycle in G and let G, be the
graph obtained from G by deleting the edge e;,. Then

2 PG, 1) = 23 AiP'(Gis (te)ese;)
i=1

where A; € C.
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Proor. This is a direct consequence of Lemma 4.1. Note, however, that, since
C is not necessarily oriented, the A;’s are not necessarily the same as the B;’s in
Lemma 4.1. [ |

If T € T(G) then we define M4 = Il.ce\g; Z1(e). Now choose some Ty € T(G)
and S C E\E,. Define U = Il.es 2 Znce)-

LEMMA 4.3.

UM& P (G,t) = 3 AP (T, (te)ecks)
TeT(G)

where the Aq’s are elements of C (depending on the choice of S).

ProoF. The proof is by induction on |E|. Let e, € E\Eq, and assume that
C(e,,To) = (v1,ey,...,Un€,,01). Denote by T(‘,i) (i=1,...,n) the graph ob-
tained from T, by first adding e, and then deleting e;. Hence TN =Ty, It is well
known that 7§ is still a tree, and hence it is a spanning tree for G; (with G, as in
Lemma 4.2). Also define S; = S\ {¢;} and U; = I1.e5, z,?}) Zp(e)- From Lemma 4.2
it now follows that

n
UM:,P'(G,t) = 25 AiUMaH P'(Giy (Le)ewe;)-
i=1
The proof follows now by induction since Lemma 4.3 is trivially correct if G is a
tree. |
Now define

1

II (0 =tz 2Zneey)
ecE

P(G,t) =

and if T € T(G), then My = [locpq Z1(e) -
Then Lemma 4.3 implies that

®) PGt = Y AsU Mg Ms'P(T,(L)eek;)-
TeT(S)

Our next aim will be to determine the value of the 4’s.
We associate with T the equations
Zi(e) = LeZn(e)

where e € E+. Fix vy € V. We then use those equations to express (z,),ey in
Zy,+ If we substitute the expressions for (z,),e into a rational function f in
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(z,)yev We obtain a rational function in z,,. We will denote this new function
by f | q°. This construction is particularly interesting if f is actually a function of

(25 Z)s, we v since then f|T will be a scalar, i.e., f|T will not depend on z,,.

LemMma 4.4.  With notations as above,

(UM M5)) | T
H (1 _ tC(e,‘T)) *

ecE\Eq

Ay =

Proor. Multiply (9) with IT.ex (1 — %.2:})Zn(e)) and apply |T. From the fact
that

|t e 1 =] © if e € Ex
Uotzi@me) V=1 _joen  tegp,

we deduce that

1= Aqs (U M Mz [T TT (1 = tzidy 2 | T
ecE\ET

=Aq(U ' Ma M) | T TI (1 — €M),

ecE\Eg

This proves Lemma 4.4. a

From now on we assume, as above, |z,| < 1 and if C € C(G) then #€ # 1. This
last condition excludes an additional set of measure 0. We will use the above com-

putations to derive a rational expression for ¥ (G, u,?).
As before,

‘I"(g’l/«’t) =f ‘i’(g,ﬂ,t,Z)dV

Te
=f X, P(G, 1) dv
T
(10
1
= X Z Aq-U_ererFl . dV
‘Lc MCFGT(Q) ’ H (1 _tezt(é)zh(e))

ecEr

-1 -1
= A¢f X U™ M M7 dv.
T,

-1
TET(Q) - I (0= tezieyznee)
ecEq
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LemuMma 4.5.  With notations and assumptions as above, let n: V — Z be some
Sunction with ¥,y n(v) = 0 and assume that x, | T =1leers tbe. Then

0 ifle€ Es: b, <0,
Xy
(11 f - dv = )
. [[ (- leZi(e)Zh(e)) Xn I T  otherwise.

ecEq

PRrRooOF.

X -
(12) . 1 = 37 TTe Tl (272 2nce) ) “xq-
II 0= tz752he)) wemo) e .
ecEq

To compute the left-hand side of (11) we have to pick those terms of (12) that do

not depend on z, i.e., those terms where

1= TI (2ie)Zne))“Xy-

eCEq

Applying |‘F we obtain

1= 1] t;ue(xﬂlq')

ecEq

or u, = b,. Hence, if there exists an e such that b, < 0 then there is no suitable
term in (12). Otherwise, there is exactly one and it has the form

[T 22 T1 zice) 2nce))“exy = I1 12 = x| T u
e e

e

Below we will need a way to determine the numbers (b,).cg, Which were intro-
duced in the proof of the previous lemma. This may be done as follows.

LEMMA 4.6. Assume that x,,|‘T = Jleckr (t,)%. Then for e € Ex, b, =
ZUGV‘T,,en(v) = _Zvevqh’e"l(v)-

It now becomes natural to introduce the following definition.

DErINITION 4.7. T € T(G) will be (S,Ty, 1) admissible ifx,‘U“McroMcFl |‘T
is of the form Il.cg, t2 with b, = 0. (Recall that U = Tlees2i(}) Znie)-)
We define

Ts1y.u(S) = {T € T(Q)| T is (S,To, ) admissible}.

We are now ready to prove the following result:
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THEOREM 4.8. With notations as above

X | T
¥(G,u,t) = Z .
TeTsm, @ 1] (1—16ET)
ecCE\Eg

Proor. This is a direct consequence of (10), Lemma 4.4 and Lemma 4.5. ®

Our next aim will now be to analyze Tsq, ,(G). This seems to be hard to do in
general. However, if G satisfies condition 4.9 below, then the problem is tractable.

CoNDITION 4.9. There exists a vertex vy in G such that for any w € V there is
an oriented path in G, starting in w and ending in vy.

Hence, from now on we will assume that G satisfies 4.9. We will need the fol-
lowing lemma.

Lemma 4.10. Let T be a tree containing a vertex vy. Then the following are
equivalent:
) My =11, Va\{vp) Sv-
(2) No edge in T starts in v,. For any other vertex v in T there is at most one
edge leaving v.
(3) Lete € Eg. Then vy € Vfrh_e.

ProoOF. (2) = (1) is easy using the fact that for a tree |Vo| =1+ |Eg|. (3) =
(2) is also easy, so we will prove (1) = (3).
Let e € Eq and assume that vy € V5, ,. On the one hand, we have

M‘T = Mrrh,eMcrl,ezt(e) ’

and on the other hand,

M= 11 z, 11 =z

ve erh'e ve V‘T.',z\ {vol

Comparing these two expressions leads to

M‘T}:,e = H Zus

ve VT, .

which is impossible by the fact that

\Ex, .| = {Va,.| — L. ]

LemMMA 4.11. With notations and assumptions as above, there exists a
T & T(Q) satisfying one of the conditions in Lemma 4.10 (and hence all of them).
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Proor. We will show that there is a T satisfying condition (2) of Lemma 4.10.
Suppose T’ is a maximal subtree of G containing v, and satisfying condition (2)
of Lemma 4.10. Assume V4. # V. Let v € V\ V4. Then there is an oriented path
P starting in v and ending in vy. Suppose v, is the vertex on P nearest to v that is
also contained in V.. Let P; be the subpath of P starting in v and ending in v;.
If we adjoin the vertices and edges of P, to T’ we obtain a bigger tree, still satis-
fying 4.10(2). This is a contradiction. |

Now let T,,(G) be the set of all spanning trees of G, satisfying one of the con-
ditions of Lemma 4.10. By Lemma 4.11 this is a non-empty set and hence we may
pick a particular T, € T,,(G).

We will now be interested in when Tgq, .(G) = T,,(G). It clearly suffices to
treat the case S = & since we may always write U“xu = x,. For simplicity, we
define Tr, () = Ty, 4(S)-

LeMMA 4.12.  With notations and assumptions as above,
VU # vg: w(v) 2 0= Ty, ,(§) = Ty ().

ProOF. Assume that p is such that vv # vg: p(v) = 0. We will first show that
T,,(S) C T, ,(G) and then Tg, ,(G) C T,,(G).

First choose T € T,,(3). Then M, Ms! = 1 by Lemma 4.10. Let x,|T =
Hecg, t. If e € Eq then, by Lemma 4.6, b, = X,cy; p(v) and since by Lemma
4.10, vo & Vs, ,, we deduce that b, = 0. Hence T € Tc}O, +(§). This proves half of
Lemma 4.12.

To prove the other half, let T € Ty, ,(Q) and define x, = x, My, Ms". If
Xy | T = Ileck, t2 then by assumption b, > 0.

Let e € Eq and suppose that vy € Vs, . Then by Lemma 4.6

0=-b= 3 7(v)= 2 n(v) — p(v)

vETh,e VETh e

= Y, (1—#oftimesvisatailinT) = Vg, | — |Ex,,|,
vETy ¢ ’ '
which implies |V, ,| < |Eq, ,|. This is, of course, impossible. Therefore, vp €
Eq,, and by Lemma 4.10 we deduce that T € T,,(G). |

Now let us call u good (with respect to (vo,Ty)) if there exists an S C E\Eq,
with U = Il.es2;(})Zn() such that, if x, = U™'x,, then n(v) = 0 for all v €
V\{v).

We now use the above to prove the final theorem of this section.
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THEOREM 4.13. Assume that G = (V,E, h,t) is a finite, directed and connected
graph satisfying 4.9 with respect to some v, € V. Choose a fixed T, € T,,(G). Let
f=2;a;x,, where all the p;’s are good with respect to (v,,T,). Then

sl
v ) ,t = .
6.0 °Fe§,(9) II (11—
ecENET

5. Trace rings

Let m, n be positive integers and let ¥ be an n-dimensional vector space. Define
G=SL(V), W=(V® V*)", R = SW, R = End(V) ® R. Here R will be con-
sidered as a non-commutative R-algebra.

Both R and R may be Z™-graded by giving the elements in the i’th copy of
V® V*in W degree (0,...,1,...,0) where the 1 occurs in the i’th place.

Both R and R admit a G-action, and it is classical that Z,, , = R®, T, , = R°
where Z,, , and T, , are, respectively, the commutative trace ring and the non-
commutative trace ring of m generic n X n matrices.

Let = (;)i=1,... m be indeterminates. Then it is possible to give an expression
for the Poincaré series P(Z,, »,1), P(T,, »,t) using the Molien-Weyl formula
[10]. Assume that 7 C G is a maximal algebraic torus in G. We will identify T with
(C*)" and write its elements as (z;,. . .,2,) Where (z;); € C*. Let T, consist of the
elements (z;,...,Z,) in T such that |z;| = 1 for all i. The Molien-Weyl formula
states that

i I -z"z)

P(Zppst) = —f aci dv
n! T, 7

m
IT IT (@ —z7'z8)
k=1 ij=1

where, as usual,

1 dzya---ndz,

dv =
T ey 72,

Now let X, , be the following graph: X has n vertices, labeled [1],...,[n] and
mn(n — 1) edges labeled [i,j,k] for 1 =i,j<n,i+j, 1<k =< mwhere [i,j,k]
starts in [/] and ends in [/].

We now choose a set of variables where t° = (;;,x){ 72",
associated to the edge [i,/, k] in X,,, ,. We then obtain

where ¢, will be
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H (1- Z,'—IZj)
P(Z t) _ i 1 i#j dv
. n! | TTA = tix) Jr. TT (1= 27"2it5.0)
ik ik i v=t
i#j i, k=t
1 1
=— — V(X0 [, %)
n! H (1 - tk)" ™ tij =1k
k

wheref= Hi;&j (1 - Zj_le).
In a similar way, we deduce from the Molien-Weyl formula that

1 1

P(T, .,t) = pr} m
%

‘I,(Jcm,nagyto)

ij, k=Tk

where g = [I1:; (1 — 27 '2)]1 (27,21 27'7)).

Hence we have to determine what the ¥ (X, ,,4,°) are, where 4 is some poly-
nomial function of (z,-“z,- );,;- To this end we will use the formulas derived in the
previous sections.

As a direct application of Theorem 3.4 we deduce the following:

ProposiTiON 5.1. Both P(Z,, »,t) and P(T,, , t) may be written in the form
P/Q, P,Q € Z[(t,);] where Q is a product of terms of the form (1 — U(t)) with
U a monomial in (t,), of degree < n.

ReMARK 5.2. Proposition 5.1 seems to suggest that Z,, , is generated in de-
grees < n. This is completely false, however, even in the case (m,n) = (2,2). In
general, Z,, , is conjectured to be generated in degrees < n(n + 1)/2 and this
bound is supposed to be optimal.

Using Lemma 3.3 we obtain a general formula for P(Z,, ,,¢) and P(T,, ,,t) in
single grading. Let s be a variable and write

P(ZpnsS) = P(Zp 1) |

ty=s’
P(Tp,n8) = P(Tpyst) | o,
Now we introduce another set of variables

U= (Uyij=1,...,n
i
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and we let

h
H(h,u) = ‘I’(JCL,,,h,t°) I’ij,l=“ij = f dv.
T

‘ (1 - Hu,,z;'lzj)

i#j

Then we obtain

ProrosiTiON 5.3.

1 1 1

P(Z, ,.,5) = —

Znms8) = 7 = DT A= s)™

a(m—l)n(n—l) I)H f
X Ha U ,
oufs 'oufs™"t - - - dupny (g ! () -

1 1 1

P(T,, 1)

Tl m-1! (1—s)™

a(m—l)n(n—l)
X m—1 -1 a m—1 <
dupy "duf3 -+ 0ug,_ )

Hu;?’“)H(g,u)

i#*j uj=s

To apply Theorem 4.13, note that ¥,, , obviously satisfies 4.9. We will put v, =
[n] and T, will be the tree consisting of the edges [i,i + 1,1] fori=1,...,n—1.

If we then decompose f and g into x,’s, we have to determine which y’s are
good. It is easy to see that the result is given by the following lemma:

LEMMA 5.4. The p’s occurring in the expansion of f and g are all good (with
respect to the chosen (vy,Ty)) if (m,n) = (2,3) or (m,n) = (3,2).

Hence we have proved the following theorem:

THEOREM 5.5. With notations as above, assume that (m,n) = (2,3) or
(m,n) = (3,2). Then Poincaré series of Z,, , and T, , are given by

Cr
P(Zm,n’t)=l—l— f| T s
n! TIT =) TE Ty (Kmn) I a- tecem)
% | e€E\Ey Lty
- -
P(Tm,nyt)=i_l_-— Z g|cr T
T = 0)" [reng®ny I (1 —20€@T)
k L eEE\Eq d ity e=tx
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