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ABSTRACT 

In this paper we derive explicit rational forms for the Poincar~ series of the com- 
mutative and the non-commutative trace rings (5.3 and 5.5). To this end, we use 
the Molien-Weyl formula to reduce the question to a problem about flows in a par- 
ticular graph. 

1. Introduction 

For simplicity we will assume that the ground field is C in this paper. However,  

it is clear that all results remain valid for an arbitrary algebraically closed field of  

characteristic zero. 

Let m,n  be natural numbers and let Mn be the variety of  n x n matrices. (Mn) m 

will be the m-fold product  M~ x . .  • x M~. Put  G = SLn and let G act on Mn by 

conjugation. Then one defines 

(1) Zm,~ = { f :  (M~) m --* C I f  polynomial and G-equivariant I , 

(2) Tm,~ = { f :  (Mn)m ~ M~ I f  polynomial  and G-equivariant I . 

Zm,, is the commutative and Tm,~ is the non-commutative trace ring of  m generic 

n x n matrices. 

Let l /be  an n-dimensional vector space. Define G = SL(I / ) ,  W = ( i / ®  I/*) m, 

R = SW, /~  = End( i / )  ® R. Then it is clear f rom (1), (2) that Zm,~ -- R c, Tm,~ = 

/ ~  for the obvious G-actions. 

R and/~ may be Zm-graded by giving the elements in the i ' th  copy of  I / ®  I/* 
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in W degree (0 . . . . .  1 , . . .  ,0) where the 1 occurs in the i 'th place. Clearly Zm, n and 

Tm, n are graded subrings of R and/~ and we may therefore define their Poincar6 

series P(Zm,~, t) and P(Tm,~, t) where t = (ti)i=l ..... m is a set of variables. Know- 

ing the Poincar6 series of a graded ring can be an important first step in the de- 

termination of the actual structure of the ring. See, e.g., [7]. 

It is well known that P(Zm, n, t) and P(Tm,~, t) are rational functions with co- 

efficients in Z. However, apart from a few cases (n = 2, (re, n) = (2,3), (2,4)), few 

explicit formulas are known. See, e.g., [7][3]. 

In this paper we will give general formulas for P(Zm,~, t) and P(Tm, n, t). Our 

main tool will be the Molien-Weyl formula [10], which gives the Poincar6 series 

of  a ring of  invariants as an integral over a torus. The standard way to evaluate 

this integral is via the residue theorem. However, in all but the simplest cases, this 

procedure is complicated and unwieldy. 

The main idea used in this paper is that, in the case of trace rings, the Molien- 

Weyl formula leads to an expression for the Poincar6 series in terms of generat- 

ing functions for flows on a certain graph. We then use elementary graph theory 

to compute these generating functions. 

First we use a standard result in the theory of linear diophantine equations to 

show that the denominators involved are products of terms of the form 1 - U(t )  

where U(t) is a monomial of degree less than n (Thm. 5.1). This result is stronger 

than what could be expected form the Procesi-Razmyzlow result, which says that 

Zm,~ is generated in degree _< n 2 (see [4][5]). 

A second observation we use is that at the cost of losing some information, 

we may replace multiple arrows by single ones. This leads to expressions for 

P(Tm, n,t) and P(Z, , , , , t )  in terms of two basic functions depending only on n 

(Prop. 5.3). 

Finally, we undertake the labour of computing the generating functions for 

flows on graphs in general. We obtain that such a generating function is a sum of 

rational functions indexed by spanning trees for the graph. Again, we may apply 

this result to trace rings (Thm. 5.5). 

Although the number of terms in the resulting expression for the Poincar6 se- 

ries is rather large, each of the individual terms has a simple structure. For exam- 

ple, we could use this expression to give an almost trivial proof for the functional 

equation satisfied by P(T,.,~, t) [2][8][9]. 

2. Preliminaries about graphs 

In the sequel a (finite directed) graph will be a quadruple g = (V, E, h, t) where 

V, E are finite sets and h, t:E--} V are arbitrary maps. V will be the set of  vertices 
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and E will be the set of  edges (arrows) in g. If  e E E then t (e),  h (e) are resp. the 

beginning and the end of  e. Sometimes if V, E, h, t are not specified then we will 

use the notation g = (Vg,Eg,h~, t~) .  

If g = (V ' ,E ' , h ' , t ' )  then we will say that g '  is a subgraph of  g (notation: 

g ' C  g ) i f  V ' C  V, E '  C E a n d  h'  = h i E ;  t' = t i E ' .  

A path P in g will be a sequence ( Vx, el . . . . .  e~, V~+l) where (vi)i E V, (ei)i E E 

and [h(ei) , t (ei)}  = [v~,vi+~ ]. We say that P starts in vl and ends in v~+~. 

We call an ei in P correctly oriented if vi = t(e~), vi+~ = h(ei) .  Otherwise, ei is 

incorrectly oriented. If  all edges in P are correctly oriented then we say that P is 

an oriented path. 

Below we will use the following notation: assume that a = (a~)~E are elements 

of  C and P = (v~,el . . . . .  e~,v~+~) is a path; then 

(3) aP  = 1"~ aei (ei) 
i 

where ~ (ei) = 1 if ei is correctly oriented in P and - 1  otherwise. 

A graph is said to be connected if for any two vertices v, w there is a path start- 

ing in v and ending in w. 

A path P = (vl ,e l  . . . . .  en,vn+l) is closedi f  vn+l = vl. I f P '  is another closed 

path then we say that P = P'  i f P '  = (vj,ej . . . . .  v~_l,ej_l,vj) for some j .  If vi 

v~ except if i = j  or if ( i , j )  = (1,.n + 1), then we call P a cycle. If P is in addition 

oriented, then we say that P is an oriented cycle. We will use the notation C(g )  

for the set of  cycles in g. The set of oriented cycles in g will be denoted by t~(g). 

A tree is a connected directed graph which does not contain any non-trivial cy- 

cles. If g is a graph and q- C g is a tree, then we say that q- is a spanning tree of  

g if V~r = Vg. It is a classical fact that any connected graph contains a spanning 

tree. We will write q-(g) for the set of  spanning trees of  g. 

If  el- C g and q- is a spanning tree, then for any e E E~\E¢  there is a unique 

non-trivial cycle, with e correctly oriented, in the graph obtained by adjoining e 

to q-. This cycle will be denoted by C(e,W).  

Let q- be a tree and let e be an edge in q-. Then if we remove e from q- we ob- 

tain two trees, which we will denote by q-t,e and q-h,~. Here C~h, e is the tree that 

contains h (e).  

3. Flows 

In this section we assume that we are given some finite connected graph g = 

( V , E , h , t )  without loops, and variables z = (zv)vev, t = (te)eee. Let f be a 
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Laurent polynomial, homogeneous of degree 0, in (zv)oev with rational coeffi- 

cients. Define 

f 
~ ( g , f , t , z )  = 

H (l - '  -- IeZt(e) gh(e) ) 
e E E  

Now assume I t~l < 1. We may then define 

(4) ~I'(g,f,t) = ( f dr. 
l-I (l - l  - -  t e z t ( e ) Z h ( e ) )  

e E E  

Here Tc is the torus given by [ (zv)vev] Iz~] = 1 vv E V} and 

A d z ~  
1 vE V 

d p  ~ .  - -  
(21ri)lvl H Zv 

vE V 

is the usual Tcinvariant volume element. 

In the sequel, we will be interested in evaluating (4). First we show that, at the 

cost of losing some information, multiple arrows may be replaced by single ones. 

LEMMA 3.1. Assume that g'  is obtained from g by replacing an edge e with 

edges el . . . . .  eu having the same beginning and end vertex as e. Extend t to a new 

set o f  variables t' = ( te)e~e~.. Then 

(5) 
1 Ou--I 

~l(g" f't')lte'=te . . . . .  teu=tel -- ( U -  1)! a t U  l t u - l~ l (~ ' f ' t ) "  

PROOF. This follows from the fact that 

1 1 0 u-1 1 u - I  
(1 -1 )u (1 - l  " teZt(e)Zh(e) ( U -  1)! Otg -l  te - -  - -  t e Z t ( e )  Z h ( e ) )  

We may expand f = ~aiaixm where a i E Q,/.ti" V --~ Z, ~"_av~viti(v) = 0 and 

xui = H v e v z ~  i(v). Then it is clear that 

(6) q l (~ , f , t )  = ~aa,~l (~ ,xm, t )  
i 

and the same holds for ~i,. 

For simplicity's sake we will write ~I,(g,~,t) and ~l (g ,# , t , z )  for ~ ( g , x ~ , t )  

and ~' (~, X~, t , z ) .  It should be noted that 't, (g, #, t) is obtained from expanding 
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'~ (9, #, t,z) into the t 's and then dropping any term that contains z's. Using this 

fact one sees that • (9, #, t) has a very natural interpretation in terms of graphs. 

DEFINITION 3.2. 

a l i v e  V 

A flow in 9 associated to ~ is a map CA : E ~ N such that for 

~_a cA(e) + a(v)  = ~a CA(e). 
h(e)=v t(e)=v 

I f  #(v) = O for all v then a flow associated to # will just be called a flow. 

We may now write 

'I '(9,u,t) = ~ I I  t, *('~ 
¢ eeE 

where the summation runs over all flows in g associated to ~. 

A flow clearly corresponds to the solution of  a system of linear diophantine 

equations. Therefore, in analogy with [6], we will call a non-zero flow fundamental 

if for any decomposition ¢ = ¢1 + ¢2 with flows @1,@2 either CA1 -- 0 or @2 -- 0. 

A non-zero flow will be called completely fundamental if ncA = CA1 + CA2, for 

flOWS @1,CA2 and n 6 N, implies that @1 = nlcA, CA2 = n2@ where n l ,n  2 E N. 

The following lemma may be easily deduced from [l, Th. 8.2]. 

Lma'MA 3.3. (1) Assume that C = (Vl, el . . . . .  eu, v~ ) is an oriented cycle in g. 

Let CA be defined as follows: CA(e) = 1 i f  e is in C and CA(e) = 0 otherwise. Then CA 

is a completely fundamental flow. 

(2) Any fundamental flow on 9 is of  the form given in (1). 

(3) Any fundamental flow on Q is completely fundamental. 

Using the results in [6] we obtain: 

(7) 'I' (~,t~, t) = 
Qu(t) 

1 ~  (I - t c) 
c6~(~) 

where Qu(t) E Z[(te)eeE] (the notation t c is as in (3)). 

Combining (6) with (7) we obtain the following result. 

THEOREM 3.4. With notations as above, there exists a polynomial Q(t)  E 

Q[(te)eeE] such that 

• (g , f ,  t) = 
Q(t) 

I~  (1 - tc)  " 
ce~5(g) 
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4. A rational expression for xI, (g , f ,  t) 

In this section we retain the notations of  the previous sections. We will compute 

g' ( 9 , f ,  t ) under some mild conditions (Thm. 4.13). This section is basically a se- 

ries of  lemmas which lead to the p roof  of  4.13. 

LEMMA 4.1. Let Z~ . . . . .  Z, be a set of  variables and let b~, . . . ,bn be elements 

o f  C, such that b l . .  . b# q: 1. Then 

z, = Bj 

(8) ff-[ (Zi -- bizi+l) j=l ~ (Zi - biZi+l) 
i :1 

Here z~+l = Zl, and the Bi's are elements o f  C. 

PROOF. I f  we multiply (8) by r[7= 1 ( Z  i - -  bizi+l) we see that we have to solve 

= B s ( z  j - bjzj+ ) 
j= l  

o r  

1 = B 1 - bnB., 

0 = Bj - bj-lBj-1 f o r j  4= 1. 

It is clear that this system has a solution if bl • • • bn =~ 1. 

Now let g be some connected, directed graph without loops and assume that 

there are given t = (te)eeE E C and variables (Zv)veV. Assume furthermore that 

for any cycle C E C(~ ) ,  t c --/: 1. 

Let 

P ' ( 9 , t )  = 
]-~ (Zt(e) -- teZh(e)) 
eEE 

LEMMA 4.2. Let C = (v l ,e l  . . . . .  vn,en,Vl) be a cycle in g and let gi be the 

graph obtained from ~ by deleting the edge ei. Then 

zv, P' ( 9 , t )  = ~, A iP '  (gi,(te)e,ei) 
i=l 

where Ai  E C. 
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PROOF. This is a direct consequence of Lemma 4.1. Note, however, that, since 

C is not necessarily oriented, the Ai's are not necessarily the same as the Bi's in 

Lemma 4.1. • 

If q- E T(g) then we define M~- = 1-L~e\tr, zt(~). Now choose some q-0 E T(g) 

and S C E\E%. Define U = IIees Z~(le)Zh(e) • 

LEMMA 4.3. 

UM~oP'(g, t )= ~, aq-e ' ( c [ ' , ( t e ) e~E~r )  
q-ET(g) 

where the A~r's are elements of C (depending on the choice of S). 

PROOF. The proof is by induction on I E] .  Let el E E\E% and assume that 

C(et,q-0) = (v l ,e l , . . .  ,vn,en,vl). Denote by q-toi) (i = 1 , . . .  ,n)  the graph ob- 

tained from el 0 by first adding e~ and then deleting ei. Hence q-tol) = q-o. It is well 

known that q-toi) is still a tree, and hence it is a spanning tree for gi (with gi as in 

Lemma 4.2). Also define Si = S \  [el} and U/= ~Ieesi Z~le)Zh(e) • From Lemma 4.2 

it now follows that 

UM~oP" (9, t) = ~ Zi UiM~onP" (gi, ( te)e~:ei). 
i=l 

The proof follows now by induction since Lemma 4.3 is trivially correct if g is a 

tree. 

Now define 

P ( 9 , t )  = 
1~ (1 -1 -- teZt(e) Zh(e) ) 
eEE 

and if q- E T(g),  then M~r = I'[e~E, Zt(e). 
Then Lemma 4.3 implies that 

(9) P ( ~ , t ) =  ~,, A~rU-1M%M~:lP(ff,(te)eeE~r). 
TET(~) 

Our next aim will be to determine the value of the AT's. 

We associate with q- the equations 

Zt(e) ---- teZh(e) 

where e E E~-. Fix v0 E V. We then use those equations to express (z~)vev in 

zv 0. If  we substitute the expressions for (zv)vev into a rational function f in 
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(zv)oEv we obtain a rational function in Zoo. We will denote this new function 

by f lq-. This construction is particularly interesting if f is actually a function of  

(z~-lzw)v, we v since then f [ q -  will be a scalar, i.e., f lq- will not depend on zoo. 

LEMMA 4.4. With notations as above, 

A 'T  = 
( M+o ) IT 
1--[ (1 - -  t C(e'%) 

eEE\E~r 

PRooF. Multiply (9) with l"IeeE (1 -1 - -  t e Z t ( e ) Z h ( e ) )  and apply [q-. From the fact 

that 

1 (: 
- -  t eZ t ( e )Zh(e )  ) tc~ = - -  tC(e ,  ~)  

if e E Er 

if e q~ E~ 

we deduce that 

I = A~r(U-IM'roMTrl) I cF I I  ( 1 -  -1 
eEE\E~r 

=Aq-(U-1M%MUr 1) I if" 1-I ( 1  - tc(~'~r)). 
e~E\Eoc 

This proves Lemma 4.4. I 

From now on we assume, as above, t tel < 1 and if C E C(9)  then t c *= 1. This 

last condition excludes an additional set of  measure 0. We will use the above com- 

putations to derive a rational expression for ~I, (9,  #, t) .  

As before, 

(10) 

, I , (9 ,~ , t )  = frcc~(9,~,t ,z)dv 

= f r x ~ P ( 9 , t ) d v  

= fT X~ ~a A,rU-IM, roMTr l 
c "T~T(9) 1-I (1 -1 - -  teZt (e)  Zh(e)  ) 

eEE,r 

fr~ X~ U-1M'roMTr l = ~, A~r dr. 
~-~r(g) i"I (1 --1 - -  t eZ t ( e )Zh(e )  ) 

eEE~ 

dv 
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LEMMA 4.5. With notations and assumptions as above, let ~ : V ~ Z be some 

function with ~v~ v 7(v) = 0 and assume that x,  ICY = I-Lee¢ te b~. Then 

g- 

fr~ l 0 if 3e E Eq-: b e < O, 
X~ dv = (11) I~  (1 -1 

- teZt¢e)Zhce)) XnIq- otherwise. 
eEE, r 

PROOF. 

(12) X. ~ l ~ t ~ - ~  -1 ue "~- (Zt(e)Zh(e)) X~. -1 I I  (1 - t eZ t ( e )Zh(e )  ) (Ue>-O) e e 
eEEq- 

To compute the left-hand side of  (11) we have to pick those terms of  (12) that do 

not depend on z, i.e., those terms where 

Applying ICY we obtain 

1 ~ --1 u e : (Zt(e)Zh(e)) X~. 
eEEq- 

1 =  ~-[ t J e ( x ,  lq ) 
eEE~r 

or Ue = be. Hence, if there exists an e such that be < 0 then there is no suitable 

term in (12). Otherwise, there is exactly one and it has the form 

1-~ tUe l I  z~(le)Zh(e) )Uex~ ~ 1-[ te be : X~ [ CY" • 
e e e 

Below we will need a way to determine the numbers (be)e~E~ which were intro- 

duced in the proof of  the previous lemma. This may be done as follows. 

LEMMA 4.6. Assume that X, ICY= IIe~E~(te) be. Then for  e E E~r, be = 

Zv~v~, ~(v) = -Zvev~hD(v) .  

It now becomes natural to introduce the following definition. 

DEFINITION 4.7. CY E T(g)  will be (S, CYo,tO admissible i f  x~U-IM%M~r 1 I q- 

is o f  the form IIe~E~rte °e with be >- O. (Recall that U -1 = IIeESZt(e) Zh(e).) 

We define 

Ts, q-0.~(g) = {CY E T(g)IcY is (S, CYo,#) admissible}. 

We are now ready to prove the following result: 
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THEOREM 4.8. With notations as above 

' t , ( 9 , t ~ ,  t )  = 
q-~ Ts,%,~(g) 

If 
1"-[ (1  - -  t c ( e ' ~ ) )  " 

e ~ E \ E ~ r  

PROOF. This is a direct consequence of  (10), Lemma 4.4 and Lemma 4.5. • 

Our next aim will now be to analyze Ts,%,,(g). This seems to be hard to do in 

general. However, if g satisfies condition 4.9 below, then the problem is tractable. 

CONDITION 4.9. There exists a vertex Vo in g such that f o r  any w E V there is 

an oriented path in g,  starting in w and ending in Vo. 

Hence, from now on we will assume that ~ satisfies 4.9. We will need the fol- 

lowing lemma. 

LEMMA 4.10. Let ~V be a tree containing a vertex Vo. Then the following are 

equivalent: 

(1) Mq- = ~vev¢\lv01 zv. 

(2) No edge in • starts in Vo. For any other vertex v in q there is at most  one 

edge leaving v. 

(3) Let e E E~. Then Vo E V~h,e. 

PROOF. (2) = (I) is easy using the fact that for a tree [V~-] = 1 + ]E~-]. (3) = 

(2) is also easy, so we will prove (1) = (3). 

Let e E Eq- and assume that v0 E V%. e. On the one hand, we have 

and on the other hand, 

M~ = Mwh, eMq-t, eZt(e) , 

M~ = ]-[ Zv r [  
v~ v%. e ve v%. \ [ vo I 

Comparing these two expressions leads to 

mcrh,e : 1-[ Zv, 
Be Vcf h,e 

which is impossible by the fact that 

Zv. 

IE h el = tVCh,el - 1- 

LEMMA 4.11. With notations and assumptions as above, there exists a 

q- E T(g)  satisfying one o f  the conditions in Lemma 4.10 (and hence all o f  them).  
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PROOF. We will show that there is a q- satisfying condition (2) of Lemma 4.10. 

Suppose q-' is a maximal subtree of g containing v0 and satisfying condition (2) 

of  Lemma 4.10. Assume V~r, ¢ V. Let v E V\ V~-,. Then there is an oriented path 

P starting in v and ending in v0. Suppose Vl is the vertex on P nearest to v that is 

also contained in Vq-,. Let P1 be the subpath of P starting in v and ending in v~. 

If we adjoin the vertices and edges of P~ to q-' we obtain a bigger tree, still satis- 

fying 4.10(2). This is a contradiction. • 

Now let Too(g) be the set of all spanning trees of g,  satisfying one of  the con- 

ditions of Lemma 4.10. By Lemma 4.11 this is a non-empty set and hence we may 

pick a particular q-o E Too(g). 
We will now be interested in when Ts,%,~(g) = Too(g). It clearly suffices to 

treat the case S = • since we may always write U-lX~ = X,. For simplicity, we 

define T%,.(g) = Tl,'To,~,(g). 

LEMMA 4.12. With notations and assumptions as above, 

¥v :# Vo: #(v) -> 0 = T%,.(g) = Too(g). 

PROOF. Assume that/~ is such that wv :/: Vo: #(v) >_ 0. We will first show that 

Too(g) C T%,~(g) and then Tq-o,~(g) C Too(g). 
First choose el- E Too(g). Then Mq-oMZr I = 1 by Lemma 4.10. Let x~[q- = 

I'IeEEw te be. If e E Eq- then, by Lemma 4.6, be = Zoevr,,e #(v) and since by Lemma 

4.10, Vo ~ V%, e, we deduce that b e > O. Hence q- E T%,~(g). This proves half of 

Lemma 4.12. 

To prove the other half, let el- E T%,~(g) and define x, = x~M%Mzr 1. If 

xn l c~ = IleeE~- te be then by assumption be > O. 
Let e E Er  and suppose that Vo E V%. Then by Lemma 4.6 

0>-- - b  e>- ~ ~7(v) >- ~ n (v )  - Ix(v) 
OEq-h,e VEq-h,e 

= ~ (1 - # of times v is a tail in q-) = ]V%.~] - [E%.el, 
o~%,e 

which implies IV%. el < I E%.e[. This is, of course, impossible. Therefore, Vo E 

Eqt, e and by Lemma 4.10 we deduce that q- E Too(g). • 

Now let us call # good (with respect to (Vo,q-0)) if there exists an S C E\E% 
with U IIe~S --1 --~ Zt(e)Zh(e) such that, if X, = U- iX, ,  then ~(v) _> 0 for all v E 

V\lvo}. 
We now use the above to prove the final theorem of this section. 
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TREOREM 4.13. Assume that 9 = ( V, E, h, t) is a finite, directed and connected 

graph satisfying 4.9 with respect to some Vo E V. Choose a f ixed q-o E Tvo(~). Let 

f =  ~,iaixz~ where all the #i's are good with respect to (oo,q-0). Then 

' ] ' ( 9 , Z  t)  = 
¢FETvo(9) 1"I (1 - t c(~'~)) " 

e~E\E~ 

5. Trace  rings 

Let m, n be positive integers and let V be an n-dimensional vector space. Define 

G = SL(V),  W =  ( V ®  V*) m, R = SIT',/~ = End(V) ® R. Here/~ will be con- 

sidered as a non-commutative R-algebra. 

Both R and/~  may be Zm-graded by giving the elements in the i ' th copy of  

V ® V* in W degree (0 . . . . .  1 . . . . .  0) where the 1 occurs in the i ' th place. 

Both R and k admit a G-action, and it is classical that Zm,~ = R e, Tm,. = R~ 

where Zm, n and Tm,n are, respectively, the commutative trace ring and the non- 

commutative trace ring of  m generic n x n matrices. 

Let t = (ti)i=l ..... m be indeterminates. Then it is possible to give an expression 

for the Poincar6 series P ( Z m , . , t ) ,  P(Tm,~, t )  using the Molien-Weyl formula 

[10]. Assume that T C  G is a maximal algebraic torus in G. We will identify Twith 

(C*)" and write its elements as (z~,. •. ,z , )  where (zi)i E C*. Let Tc consist of the 

elements (Zl . . . . .  z~) in Tsuch that Iz,l -- 1 for all i. The Molien-Weyl formula 

states that 

1~ (1 -- Z[-Izj) 

1 fT  c i--/:j 
P(Zm,~, t )  = ~.v f i  1~ ( 1 -  z l lZ j tk )  

k = l  i,j=l 

dv 

where, as usual, 

dp -~ 
1 d z l  A ' ' ° A  dZn 

(2 r i )  n Zn" 'Z~  

Now let ~m,n be the following graph: 3£ has n vertices, labeled [1] . . . . .  [n] and 

m n ( n  - 1) edges labeled [i,j ,k] for 1 _< i , j  <_ n, i . j ,  1 <_ k <_ m where [i,j ,k] 

starts in [i] and ends in [ j ] .  

We now choose a set of variables where t ° = ~'t0,kji,j=lxk=~ ..... ..... r.n where to, k will be 

associated to the edge [i,j, k] in 3£m,n. We then obtain 
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1 
P(Zm,. , t )  = ~. 

~-[ (1 - Z[-lzj) ] 
1 '*j 

H (I-- tii, k ) ~ (1 - - - ~ t i j , , )  dv  
i,k i,j,k 

i~j 

1 1 

n[ 1-[ (1 - tk)" 
k 

where f =  ]-[i~j (1 - z71zj). 

tij, k=tk 

v~ (SCm'n'f't°) tij.k=tk 

In a similar way, we deduce from the Molien-Weyl formula that 

P(Tm, n,t) - 
1 1 

n[  1 [  (1 - tk)  ~ 
k 

~l(3(m'n'g't°) tij, k=tk 

where g [Hic.j (1 zTlzj)] ~ -1 = - ( E i , j = ~  zi zj). 
Hence we have to determine what the • (~¢m,n, h, t °) are, where h is some poly- 

nomial function of  (zT~zj)i,j. To this end we will use the formulas derived in the 

previous sections. 

As a direct application of  Theorem 3.4 we deduce the following: 

PROPOSITION 5.1. Both P ( Z re,n, t) and P (Tin, n, t) may be written in the form 
P/Q, P, Q E z [( tk)k] where Q is a product of  terms of  the form ( 1 - U(t)) with 
U a monomial in (tk)k of  degree < n. 

REMARK 5.2. Proposition 5.1 seems to suggest that Zm.,, is generated in de- 

grees <_ n. This is completely false, however, even in the case (re, n) = (2,2). In 

general, Zm, n is conjectured to be generated in degrees _< n(n + 1)/2 and this 

bound is supposed to be optimal. 

Using Lemma 3.3 we obtain a general formula for P(Zm.,,, t) and P(Tm., ,  t)  in 

single grading. Let s be a variable and write 

P(Zm..,s) = P(Zm,. , t )  It,=~' 

P(Tm.n,s) = P(Tm, n,t) ]t,=s" 

NOW we introduce another set of  variables 

u = (uij)i,j=l ..... 
i.j 
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and we let 

H(h,u)  = ql(~l ,~,h, t  °) [t~z,=ui J = fro h (1 dr. 

Then we obtain 

PROPOSITION 5 .3 .  

1 1 1 
P ( Z m ' n ' S )  - n !  ( m -  1)! (1 - - S )  mn 

~,  m--l ~ , m - - l - -  .-"~,,m--1 Ui7 -1 ' X 
t,'Ul2 t~Ul3 " " "tP~nn-1 \ i * j  / uij=s 

1 1 1 
P ( T m ,  n , t )  = - -  n[ (m - 1)! (1 - S) mn 

o ( m - l ) n ( n - l )  ( I H ( g ' u )  ~j=. 
~.  m--l ~ , m - - 1 - - - - ~ , , m - - I  T~  Ui7 -1 X 
ou12 OUl3 " " "Ut~nn--1 \ i ~ j  I 

To apply Theorem 4.13, note that ~Em.~ obviously satisfies 4.9. We will put Vo = 

[n] and 'To will be the tree consisting of  the edges [i,i + 1,1] for i = 1 . . . . .  n - 1. 

If  we then decompose f and g into X,'s, we have to determine which/~'s are 

good. It is easy to see that the result is given by the following lemma: 

LEMMA 5.4. The #'s occurring in the expansion o f f  and g are all good ( with 
respect to the chosen (vo,q-0)) i f  (m,n) >_ (2,3) or (m,n) >_ (3,2). 

Hence we have proved the following theorem: 

THEOREM 5.5. With notations as above, assume that (m ,n )  >_ (2,3) or 

(m,n) >_ (3,2). Then Poincard series o f  Zm, n and Tm, n are given by 

1 1 [~r Z 
P(Zm, n,t) - n! ]-I (1 - tk) n ETvo(3fLm.n ) 

k 

P(Tm, n,t) - 1 1 [~ ~a 
n[ 1~ (1 - tk)" ETvo(3C~m,n) 

k 

1-I (1 - t °C(e'ef)) 

eEE\E~ tij, k=tk 

II (1 - t °c{e'¢)) 
eEE\E~r tiy, k=t k 
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